Forget your password?
Fields marked with an asterisk (*) are mandatory
A new sub-synchronous oscillation monitoring system provides warning of the early stages of resonance—which could otherwise lead to protection tripping or system damage—across a far wider range of frequencies than previously existing systems.
1 FACTS plant describes a range of devices, often power-electronic based, that provide flexible control of the AC transmission system. Examples include Series Capacitors, the STATCOM (Static Synchronous Compensator) and the SVC (Static Var Compensator).
2 LC: Inductance (L) – Capacitance (C)
Douglas Wilson, WAMS Chief Scientist at GE Grid Solutions, explains the different ways the results can be analyzed and used. “The most immediate use is to provide real-time SSO situational awareness and to identify interactions, particularly when connecting new plant onto the existing transmission system. Operators have to be able to understand and use the data quickly, so the results are presented in a practical wide-area map view with live data charts.” The system-wide SSO map view presents mode amplitude and alarm state across the system. “A particular challenge consisted in rationalizing oscillation information from multiple signal types from two such different domains as electrical and mechanical systems to provide a clear, effective presentation to users,” according to Wilson.
System-Wide SSO Overview
Flexible User-Defined Displays
Historical SSO Analysis
Practical experience to date using the SSO monitoring solution on the British national transmission grid is very encouraging. Several months of data collected from a number of WMU devices are already feeding long-term reviews of observed SSO behavior, including recommendations for further investigations. So far, the expected generator torsional modes are observable in the network voltage and current signals, as well as other high frequency oscillations likely to be related to wind farms and other power electronics systems.
The solution was developed in-house by GE and demonstrated under the VISOR project3 , and has also been deployed by SP Energy Networks to support the commissioning of series compensation on the British transmission network. Analysis of the system’s data has provided added-value from the outset. In one example, an oscillatory mode, seen across a 100-mile wide area, was observed not as a generator torsional oscillation and was present independently of the status of the series compensation. The mode varied in frequency, occasionally moving close to a generator torsional mode, and showed some occurrences of reduced damping and raised amplitude. Although the amplitudes involved were very small throughout the period of monitoring, this has provided engineers with valuable information to target further investigation as a matter of prudence.
3 VISOR is a UK innovation demonstration project funded by the British electricity consumer through the Network Innovation Competition mechanism, awarded by Ofgem, the UK regulator.
Forgot your password? Click here
Don't have an account? Sign up
Fields marked with an asterisk (*) are mandatory